

Feature Detection and Matching: Detectors and Descriptors II

CS 6384 Computer Vision Professor Yapeng Tian Department of Computer Science

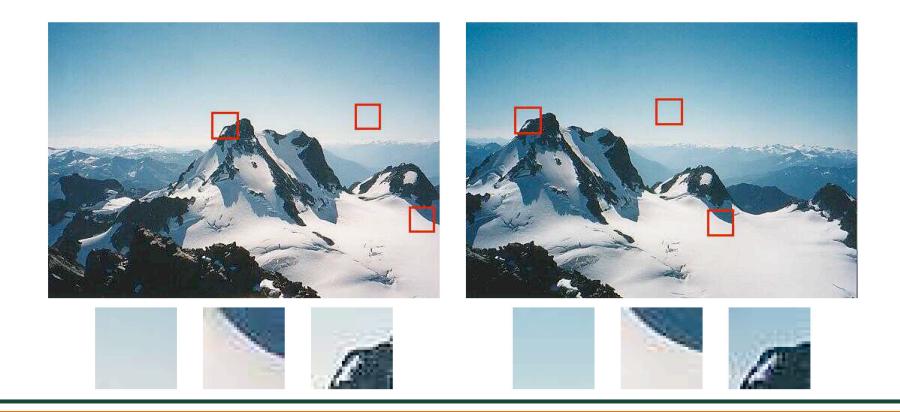
Slides borrowed from Professor Yu Xiang.

Feature Detection and Matching

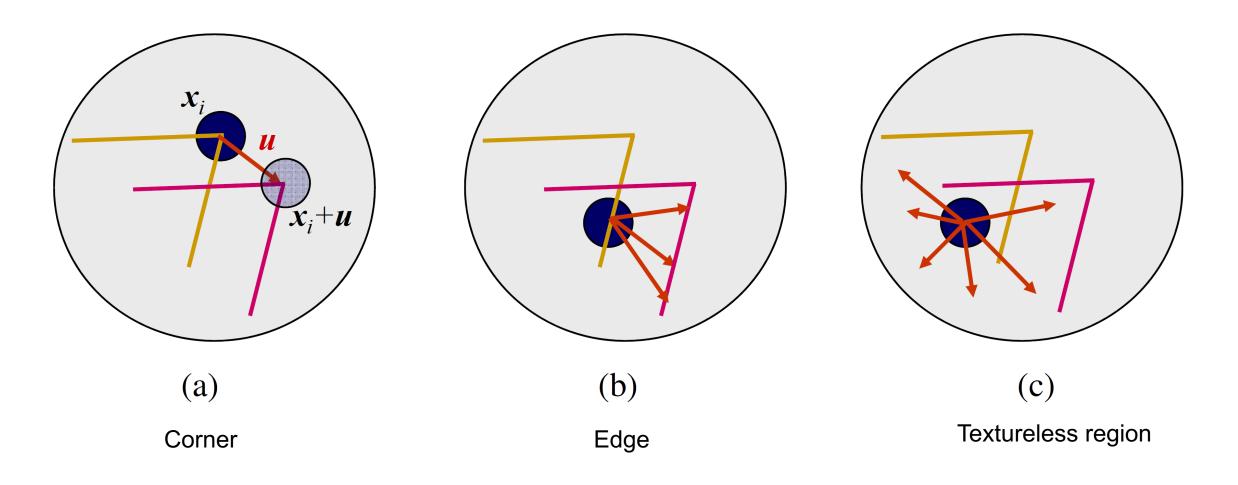
Geometry-aware Feature Matching for Structure from Motion Applications. Shah et al, WACV'15 Applications: stereo matching, image stitching, 3D reconstruction, camera pose estimation, object recognition

Feature Detectors

How to find image locations that can be reliably matched with images?



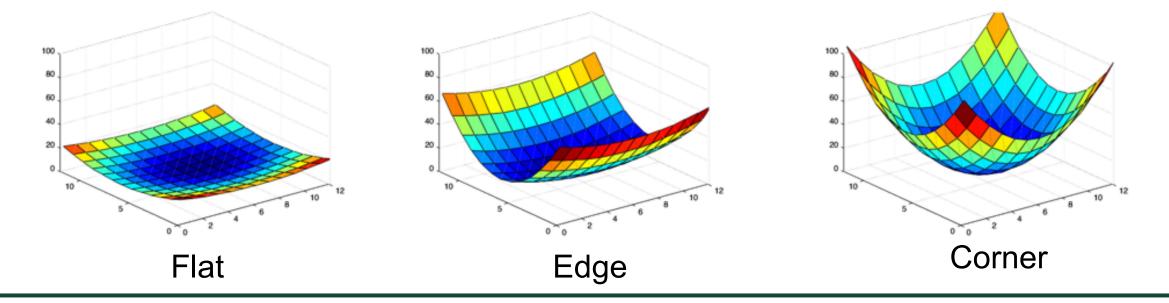
Feature Detectors



Harris Corner Detector

$$f(\Delta x, \Delta y) \approx \sum_{x,y} w(x,y) (I_x(x,y)\Delta x + I_y(x,y)\Delta y)^2$$

$$f(\Delta x, \Delta y) \approx (\Delta x \quad \Delta y) M\begin{pmatrix}\Delta x\\\Delta y\end{pmatrix} \qquad M = \sum_{x,y} w(x,y) \begin{bmatrix} I_x^2 & I_x I_y\\I_x I_y & I_y^2 \end{bmatrix} = \begin{bmatrix} \sum_{x,y} w(x,y) I_x^2 & \sum_{x,y} w(x,y) I_x I_y\\\sum_{x,y} w(x,y) I_x I_y & \sum_{x,y} w(x,y) I_y^2 \end{bmatrix}$$



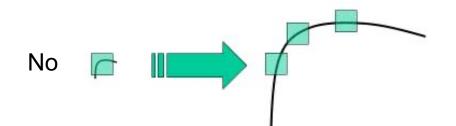
THE UNIVERSITY OF TEXAS AT DALLAS

Invariance

Can the same feature point be detected after some transformation?

- Translation invariance Are Harris corners translation invariance?
- 2D rotation invariance Are Harris corners rotation invariance?
- Scale invariance

Are Harris corners scale invariance?



Scale Invariance

Solution 1: detection features in all scales, matching features in corresponding scale (for small scale change)

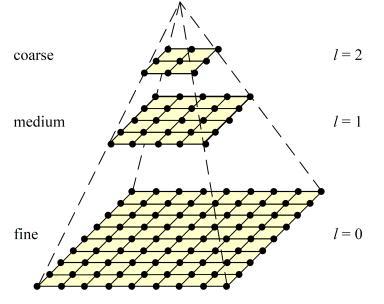
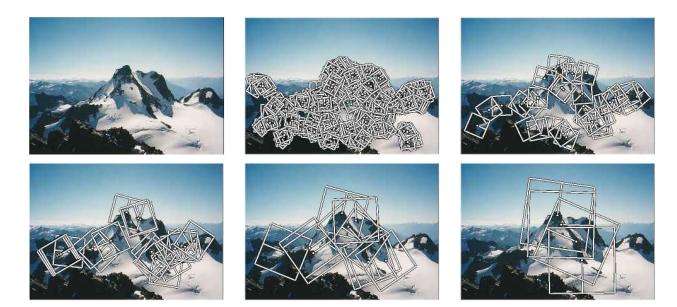


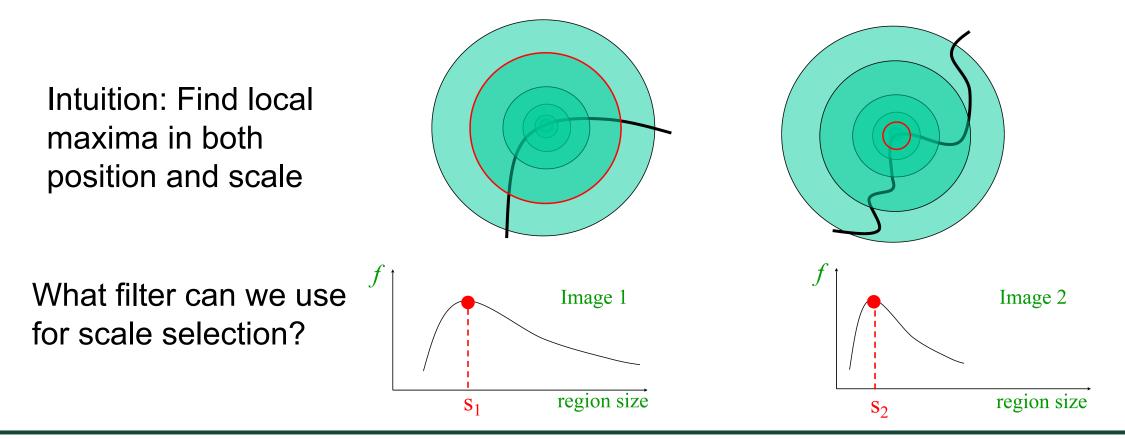
Image pyramid



Multi-scale oriented patches (MOPS) extracted at five pyramid levels (Brown, Szeliski, and Winder 2005)

Scale Invariance

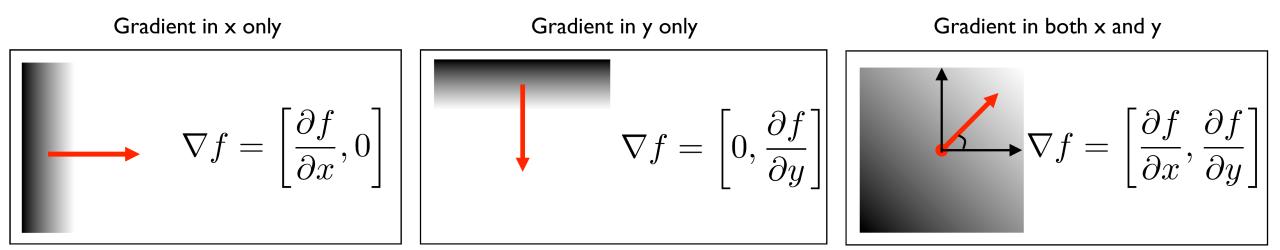
Solution 2: detect features that are stable in both location and scale



Recall Derivative Filter



Image Gradient

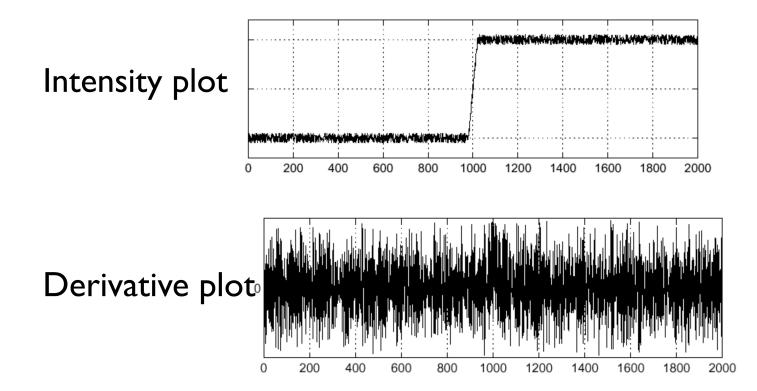


Gradient direction $\theta = \tan^{-1} \left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x} \right)$

Gradient magnitude
$$|\nabla f|| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$

Signal Noises

Derivative filters are sensitive to noises



How to deal with noises?

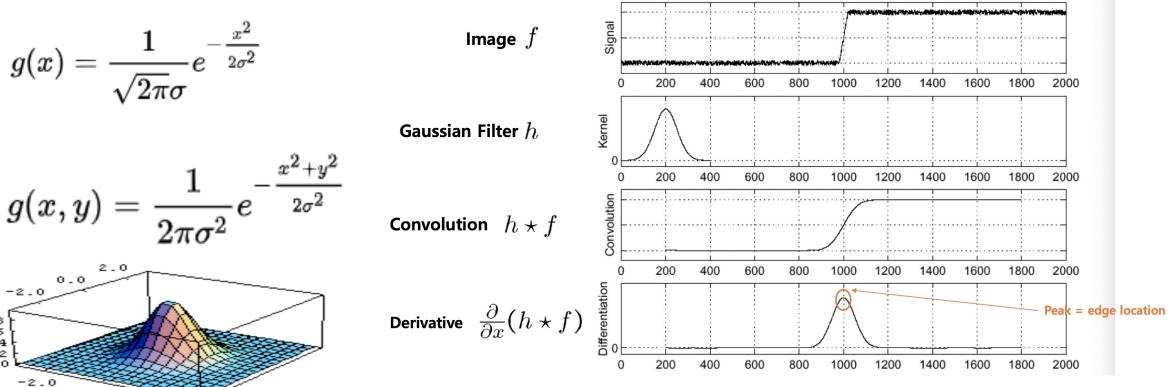
Gaussian Filter

Smoothing

2D

0.8 0.6 0.4 0.2 0.0

1D
$$g(x)=rac{1}{\sqrt{2\pi}\sigma}e^{-rac{x^2}{2\sigma^2}}$$



Sigma = 50

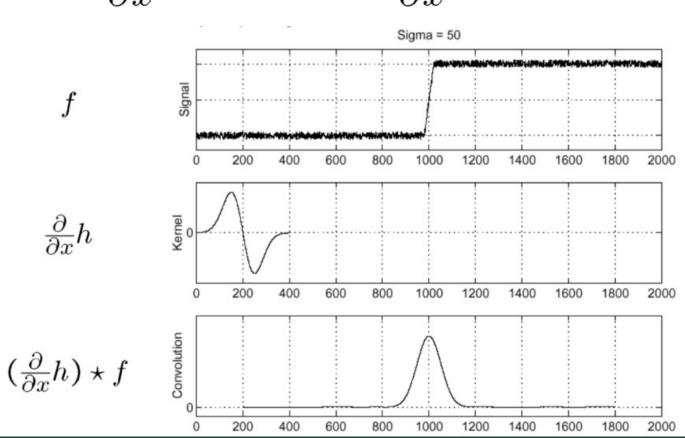
2.0

0.0

Derivative of Gaussian Filter

• Convolution is associative $\frac{\partial}{\partial x}(h \star f) = (\frac{\partial}{\partial x}h) \star f$

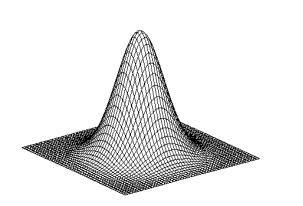
Smoothing and derivative

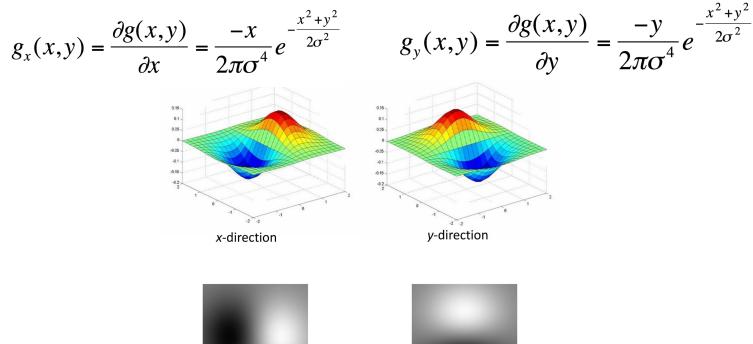


Derivative of Gaussian Filter

Convolution is associative

$$\frac{\partial}{\partial x}(h \star f) = (\frac{\partial}{\partial x}h) \star f$$

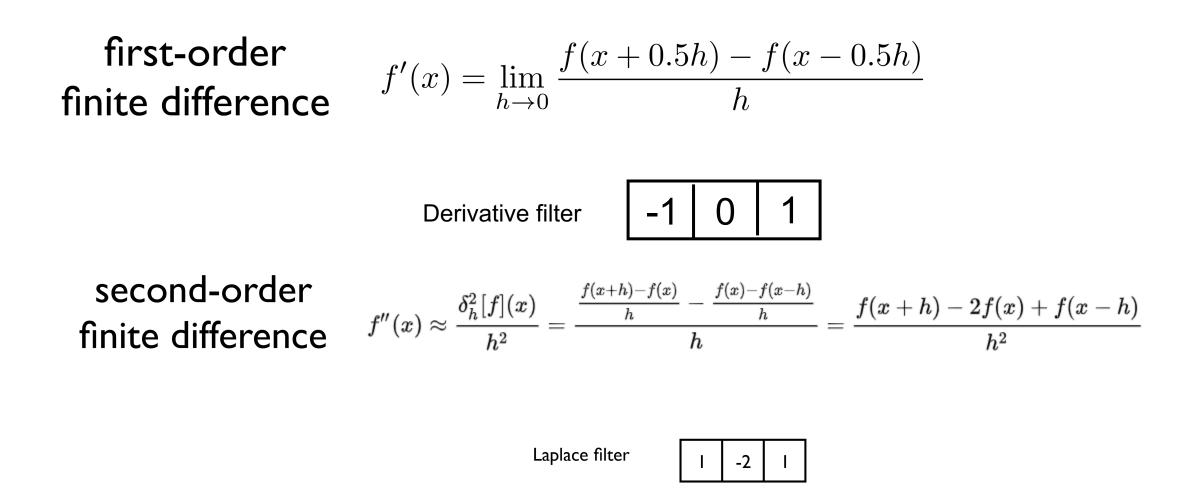




Gaussian

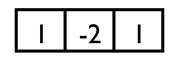
$$g(x,y) = rac{1}{2\pi\sigma^2} e^{-rac{x^2+y^2}{2\sigma^2}}$$

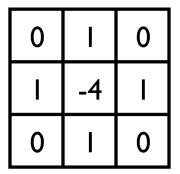
Laplace Filter



Laplace Filter

2D
$$\nabla^2 \mathbf{I} = \frac{\partial^2 \mathbf{I}}{\partial x^2} + \frac{\partial^2 \mathbf{I}}{\partial y^2}$$





ID Laplace filter

2D Laplace filter

Laplacian of Gaussian Filter

$$\nabla^{2}\mathbf{I} = \frac{\partial^{2}\mathbf{I}}{\partial x^{2}} + \frac{\partial^{2}\mathbf{I}}{\partial y^{2}}$$

$$\nabla^{2}\mathbf{I} \circ g = \nabla^{2}g \circ \mathbf{I}$$

$$\nabla^{2}g = \frac{x^{2} + y^{2} - 2\sigma^{2}}{\sigma^{4}}g(x, y)$$

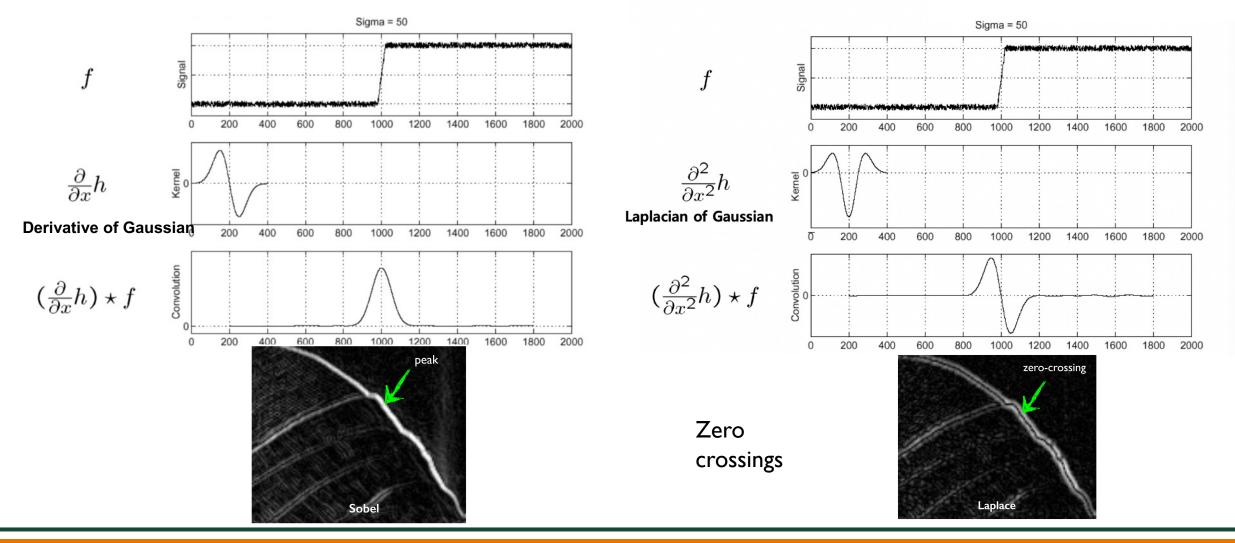
$$\nabla^{2}g = \frac{x^{2} + y^{2} - 2\sigma^{2}}{\sigma^{4}}g(x, y)$$

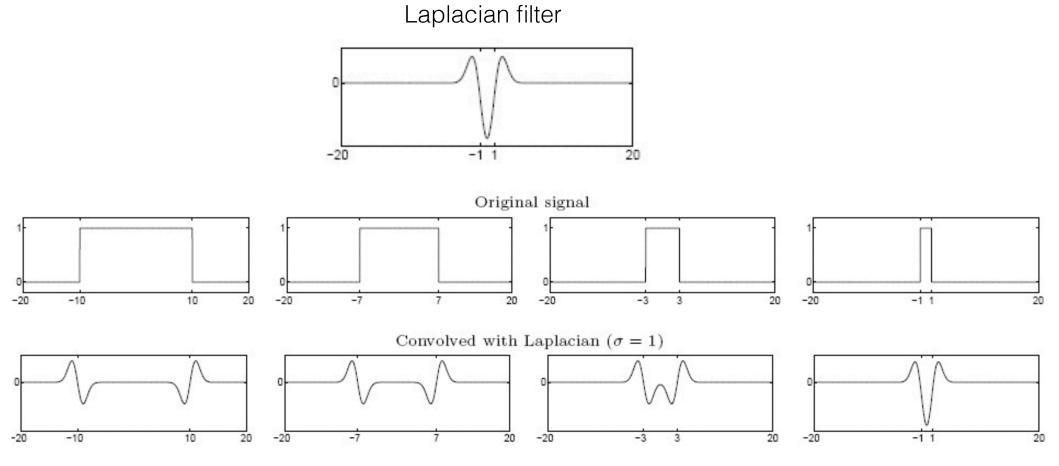
$$\nabla^{2}g = \frac{\partial^{2}\mathbf{I}}{\partial x^{2}} + \frac{\partial^{2}\mathbf{I}}{\partial y^{2}}$$

$$\nabla^{2}h_{\sigma}(u, v)$$

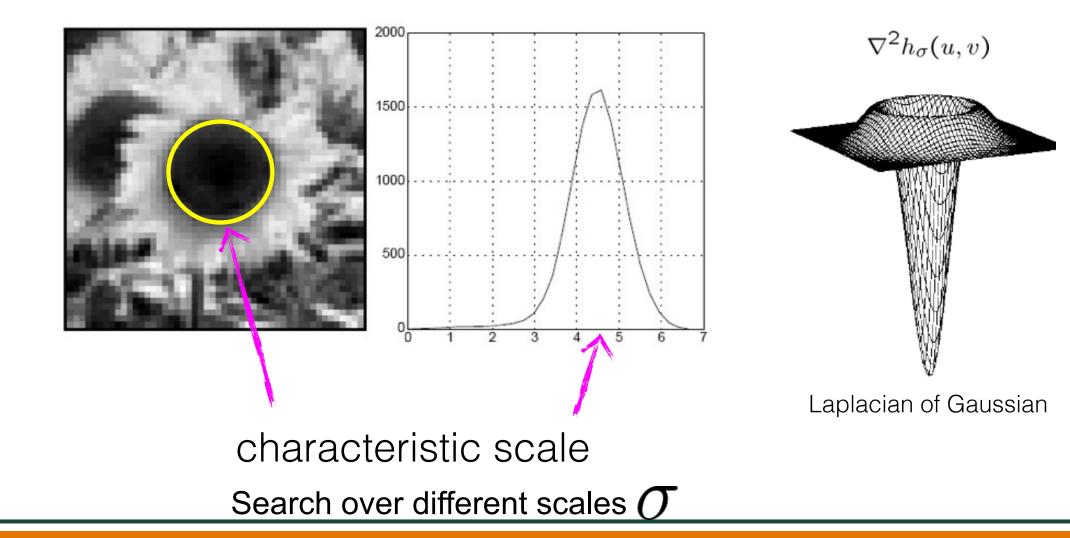
Smoothing and second derivative

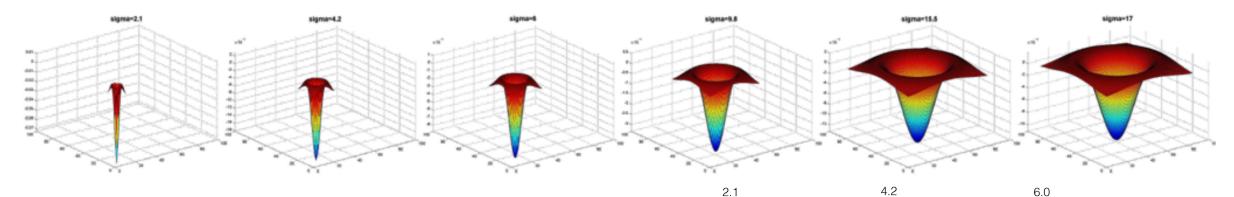
Laplacian of Gaussian Filter



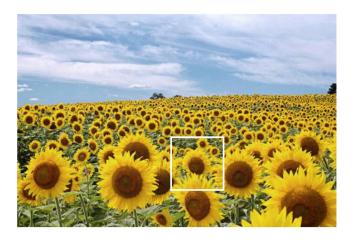


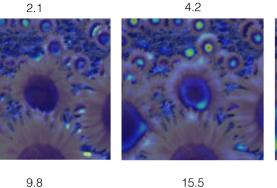
Highest response when the signal has the same **characteristic scale** as the filter

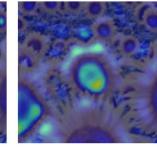


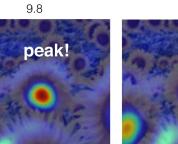


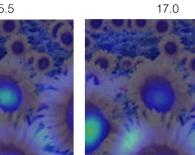
Multi-scale 2D Blob detection

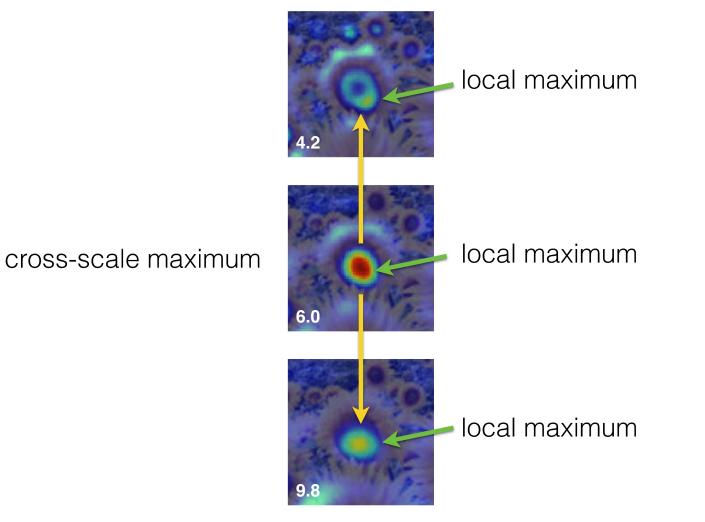








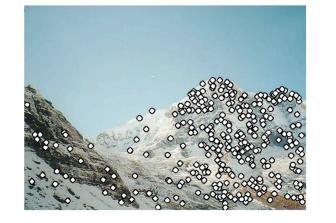


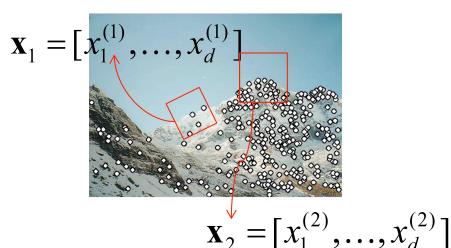


Scale Invariance Feature Transform (SIFT)

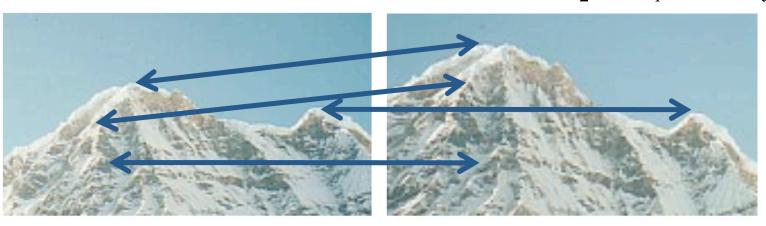
Keypoint detection

Compute descriptors





Matching descriptors



David Lowe, Distinctive Image Features from Scale-Invariant Keypoints. IJCV, 2004

SIFT: Scale-space Extrema Detection

Difference of Gaussian (DoG)

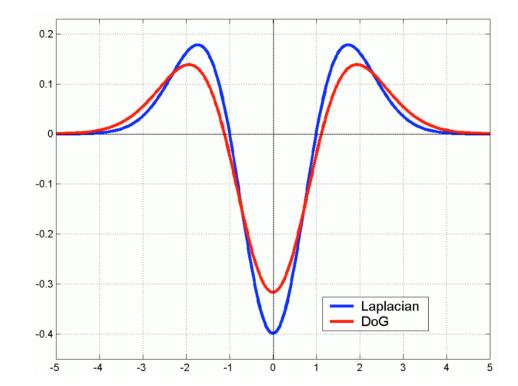
$$G(x, y, \sigma) = \frac{1}{2\pi\sigma^2} e^{-(x^2 + y^2)/2\sigma^2}$$

$$L(x, y, \sigma) = G(x, y, \sigma) * I(x, y)$$

$$D(x, y, \sigma) = (G(x, y, k\sigma) - G(x, y, \sigma)) * I(x, y)$$

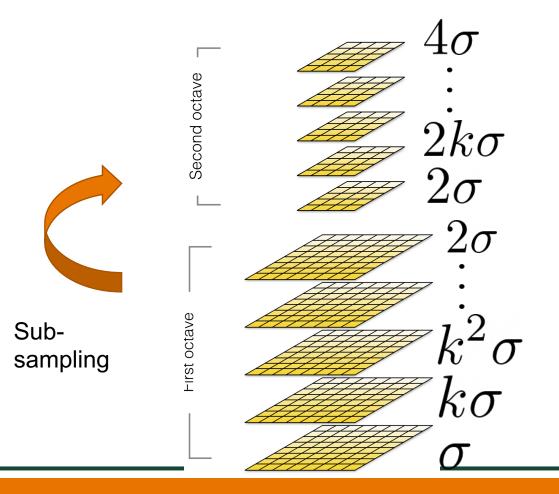
= $L(x, y, k\sigma) - L(x, y, \sigma).$

Approximate of Laplacian of Gaussian (efficient to compute)



SIFT: Scale-space Extrema Detection

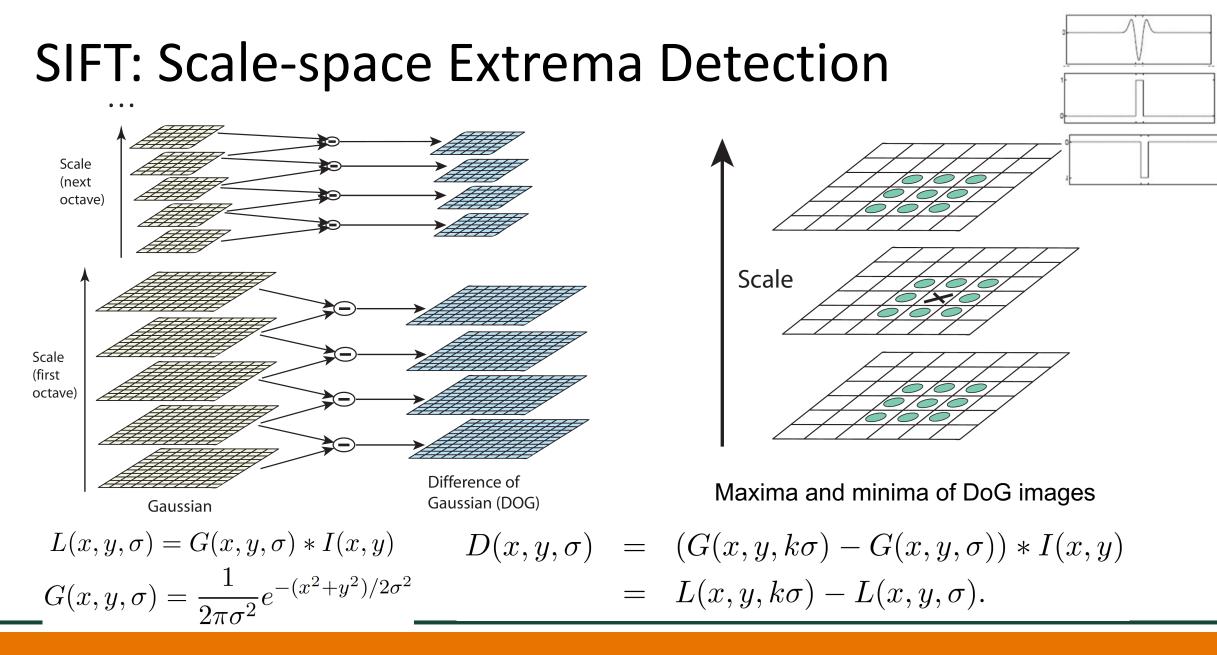
Gaussian pyramid



Gaussian filters

$$L(x, y, \sigma) = G(x, y, \sigma) * I(x, y)$$
$$G_{\sigma_1} * G_{\sigma_2} = G_{\sigma} \quad \sigma^2 = \sigma_1^2 + \sigma_2^2$$

- Sub-sampling by a factor of 2
 - · Multiple the Gaussian kernel deviation by

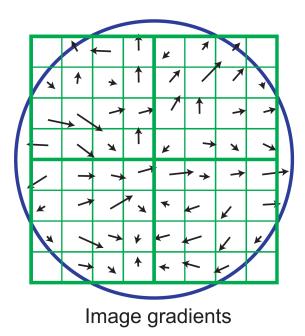


THE UNIVERSITY OF TEXAS AT DALLAS

SIFT Descriptor

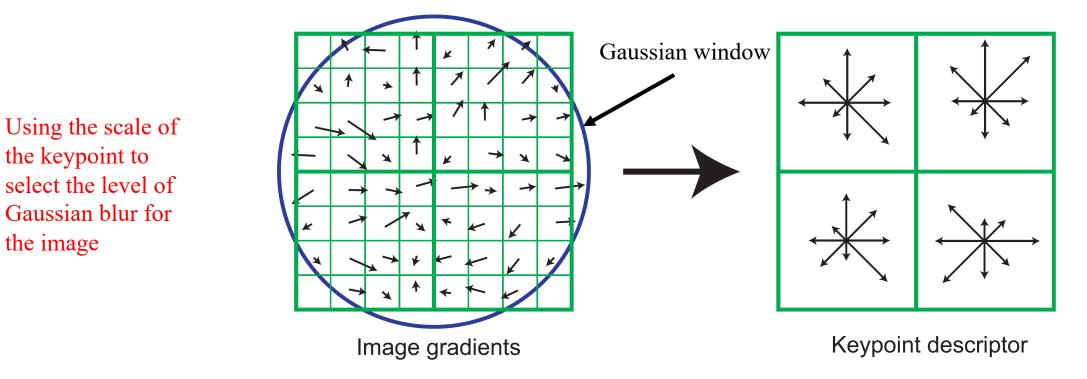
Image gradient magnitude and orientation

$$L(x, y, \sigma) = G(x, y, \sigma) * I(x, y)$$



SIFT Descriptor

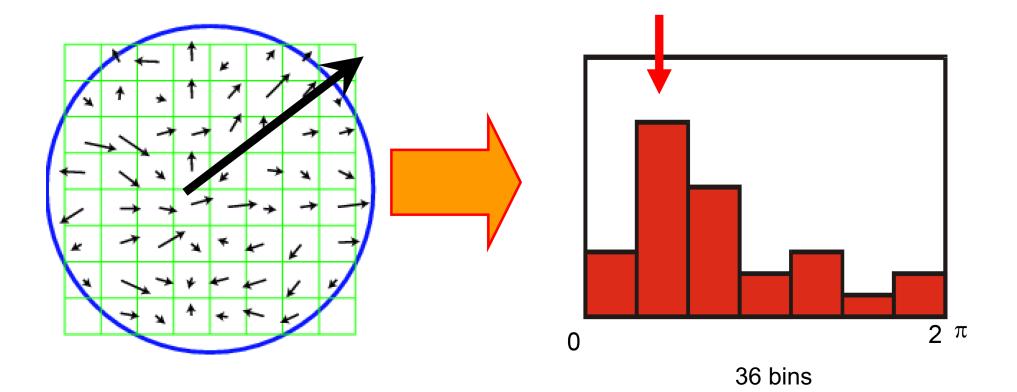
- Divide the 16x16 window into a 4x4 grid of cells (2x2 case shown below) •
- Compute an orientation histogram for each cell •
- 16 cells * 8 orientations = 128 dimensional descriptor



the image

SIFT: Rotation Invariance

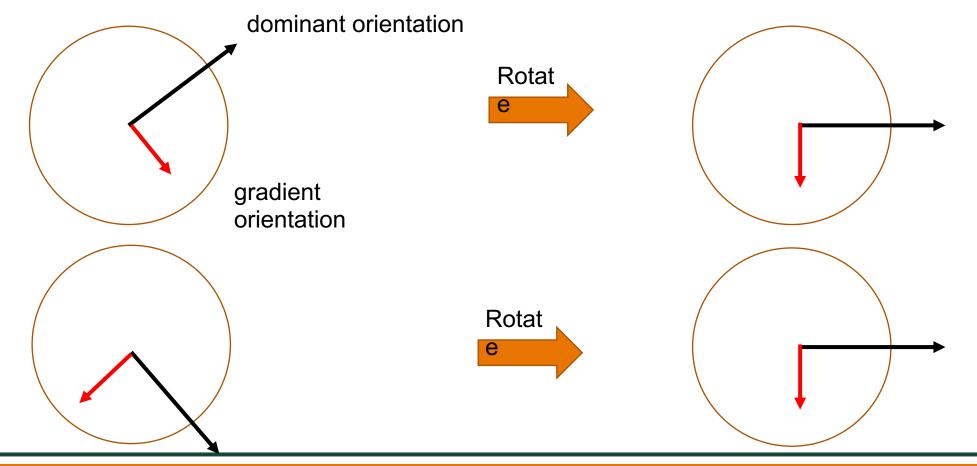
Rotate all orientations by the dominant orientation



The university of texas at dallas

SIFT: Rotation Invariance

Rotate all orientations by the dominant orientation



SIFT Properties

Can handle change in viewpoint (up to about 60 degree out of plane rotation)

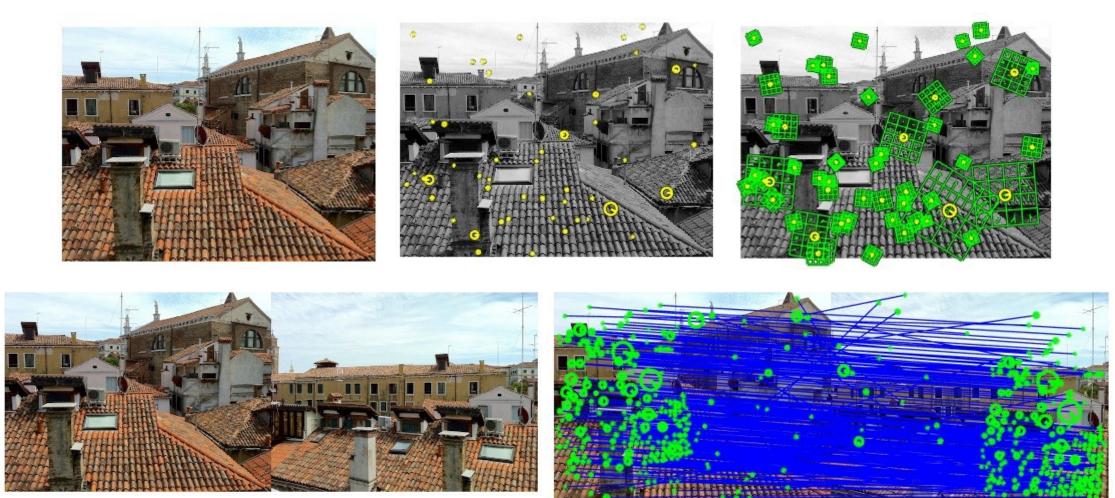
Can handle significant change in illumination

Relatively fast < 1s for moderate image sizes

Lots of code available

• E.g., https://www.vlfeat.org/overview/sift.html

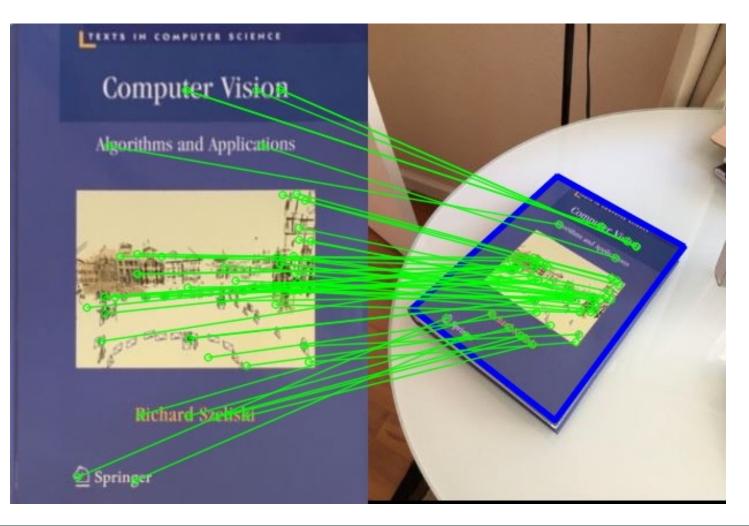
SIFT Matching Example



https://www.vlfeat.org/overview/sift.html

THE UNIVERSITY OF TEXAS AT DALLAS

SIFT Matching Example



THE UNIVERSITY OF TEXAS AT DALLAS

Further Reading

Section 7.1, Computer Vision, Richard Szeliski

David Lowe, Distinctive Image Features from Scale-Invariant Keypoints. IJCV, 2004

ORB: An efficient alternative to SIFT or SURF. Rublee et al., ICCV, 2011